Search results for " 34M50"

showing 4 items of 4 documents

Integrability of the one dimensional Schrödinger equation

2018

We present a definition of integrability for the one dimensional Schroedinger equation, which encompasses all known integrable systems, i.e. systems for which the spectrum can be explicitly computed. For this, we introduce the class of rigid functions, built as Liouvillian functions, but containing all solutions of rigid differential operators in the sense of Katz, and a notion of natural boundary conditions. We then make a complete classification of rational integrable potentials. Many new integrable cases are found, some of them physically interesting.

Class (set theory)Integrable systemFOS: Physical sciencesComplex analysisAlgebras01 natural sciencesSchrödinger equationsymbols.namesake[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]0103 physical sciencesBoundary value problem0101 mathematics010306 general physicsGauge field theoryMathematical PhysicsMathematical physicsMathematicsMSC: 34M46 34M50 37J30Liouville equation010102 general mathematicsSpectrum (functional analysis)Operator theory[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Statistical and Nonlinear PhysicsMathematical Physics (math-ph)Differential operatorHamiltonian mechanicssymbols34M46 34M50 37J30
researchProduct

Algebraic groups as difference Galois groups of linear differential equations

2019

We study the inverse problem in the difference Galois theory of linear differential equations over the difference-differential field $\mathbb{C}(x)$ with derivation $\frac{d}{dx}$ and endomorphism $f(x)\mapsto f(x+1)$. Our main result is that every linear algebraic group, considered as a difference algebraic group, occurs as the difference Galois group of some linear differential equation over $\mathbb{C}(x)$.

Linear algebraic groupPure mathematicsAlgebra and Number TheoryEndomorphism010102 general mathematicsGalois theoryGalois groupField (mathematics)Commutative Algebra (math.AC)Mathematics - Commutative Algebra01 natural sciencesMathematics - Algebraic GeometryLinear differential equationAlgebraic group0103 physical sciencesFOS: Mathematics010307 mathematical physics0101 mathematicsAlgebraic numberAlgebraic Geometry (math.AG)12H10 12H05 34M15 34M50 14L15MathematicsJournal of Pure and Applied Algebra
researchProduct

The differential Galois group of the rational function field

2020

We determine the absolute differential Galois group of the field $\mathbb{C}(x)$ of rational functions: It is the free proalgebraic group on a set of cardinality $|\mathbb{C}|$. This solves a longstanding open problem posed by B.H. Matzat. For the proof we develop a new characterization of free proalgebraic groups in terms of split embedding problems, and we use patching techniques in order to solve a very general class of differential embedding problems. Our result about $\mathbb{C}(x)$ also applies to rational function fields over more general fields of coefficients.

Pure mathematicsGroup (mathematics)General Mathematics010102 general mathematicsGalois groupField (mathematics)Rational functionMathematics - Commutative AlgebraCommutative Algebra (math.AC)01 natural sciences12H05 12F12 34M50 14L15Mathematics - Algebraic Geometry0103 physical sciencesFOS: MathematicsEmbeddingOrder (group theory)Differential algebra010307 mathematical physics0101 mathematicsAlgebraic Geometry (math.AG)Picard–Vessiot theoryMathematics
researchProduct

Free differential Galois groups

2019

We study the structure of the absolute differential Galois group of a rational function field over an algebraically closed field of characteristic zero. In particular, we relate the behavior of differential embedding problems to the condition that the absolute differential Galois group is free as a proalgebraic group. Building on this, we prove Matzat's freeness conjecture in the case that the field of constants is algebraically closed of countably infinite transcendence degree over the rationals. This is the first known case of the twenty year old conjecture.

Rational numberPure mathematicsGroup (mathematics)Applied MathematicsGeneral Mathematics010102 general mathematicsGalois groupField (mathematics)Transcendence degreeMathematics - Commutative AlgebraCommutative Algebra (math.AC)01 natural sciences12H05 12F12 34M50FOS: MathematicsDifferential algebra0101 mathematicsAlgebraically closed fieldPicard–Vessiot theoryMathematics
researchProduct